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Quality Factor - A Measure of Energy Storage 
Components
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2nd-Order Filter
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The general second-order or biquadratic filter transfer function is usually 
expressed in the standard form

where 0 and Q determine the natural modes (poles) according to

Definition of the parameters 0 and Q of a pair of complex conjugate poles.

2
1

QPole Quality Factor

where  is the damping ratio.
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Damping Ratio and Pole Quality Factor
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LC Resonant Tank

When a coil and a capacitor are 
combined, the resulting circuit has special 
characteristics. 

The impedance (resistance to current 
flow) of the circuit changes with the 
frequency of the voltage. Current will flow 
easily at a given frequency, but has 
difficulty flowing at another frequency.

The tuning circuit that select a particular 
radio station utilizes this characteristic.
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Two-Pole Response: Exact Curves
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Quality Factor (Q)

CycleperDissipatedEnergy
atStoredEnergyMax

W
W

Q
D

S 022


 

An energy analysis of a RLC circuit provides a basic definition of the quality 
factor (Q) that is used across engineering disciplines, specifically:

The quality factor is a measure of the sharpness of the resonance peak; the larger 
the Q value, the sharper the peak

BW
Q 0


where BW=bandwidth
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Quality Factor (Q)

Q-factor is the ratio of its reactance to its resistance.

Q-factor is a measure of the "quality" of a resonant system. Resonant systems 
respond to frequencies close to the natural frequency much more strongly than 
they respond to other frequencies. 

On a graph of response versus frequency, the bandwidth can be defined as the “full 
width at half maximum” or FWHM. The Q-factor is defined as the resonant 
frequency divided by the bandwidth: 
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Physical Characteristics of Capacitor
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The current through the capacitor (measure with reference direction) is given by as
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Linear Capacitor: Ideal Capacitor

Linear Capacitor:
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Dielectric Constants

Dielectric constant (k) gets it's value by comparison of the charge holding ability of a 
vacuum where k=1. Thus, k is the ratio of the capacitance with a volume of dielectric 
compared to that of a vacuum dielectric.

k = εd/ε0

εd is the permittivity of the dielectric
ε0 is the permittivity of free space

81Pure Water

11Tantalum 

7Aluminum oxide

5 to 18000 +Ceramics

2Petroleum

56Glycerine (15°C)

2.5 to 35Rubber

2.5 to 8Wood

3 to 6Mica

5 to 10Glass

3.5Paraffin paper

1.0006Air

1.0000Vacuum

Dielectric ConstantMaterial

Dielectric constants vary with temperature, 
voltage, and frequency making capacitors messy 
devices to characterize. 

Dielectric strength
Dielectric strength is a property of the dielectric 
that is usually expressed in volts per mil (V/.001") 
or volts per centimeter (V/cm). If we exceed the 
dielectric strength, an electric arc will flash over 
and often weld the plates of a capacitor together.
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ESR – Equivalent Series Resistance

ESR is the sum of in-phase AC resistance. It includes resistance of the dielectric, 
plate material, electrolytic solution, and terminal leads at a particular frequency. ESR 
acts like a resistor in series with a capacitor (thus the name Equivalent Series 
Resistance). This resister can cause circuits to fail that look just fine on paper and is 
often the failure mode of capacitors.

To charge the dielectric material current needs to flow down the leads, through the 
lead plate junction, through the plates themselves - and even through the dielectric 
material. The dielectric losses can be thought of as friction of aligning dipoles and 
thus appear as an increase (or a reduction of the rate of decrease -- this increase is 
what makes the resistance vs. frequency line to go flat.) of measured ESR as 
frequency increases.

As the dielectric thickness increases so does the ESR. As the plate area increases, the 
ESR will go down if the plate thickness remains the same.

Source: http://xtronics.com/reference/esr.htm
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Q Factor of a Capacitor

The Q-factor of a capacitor is Xc/Rp

where Xc=1/ωC and Rp is the equivalent parallel resistance that represents the 
dielectric and conduction losses.

The Q-factor of a resonant circuit is a measure of the circuit's peak response at the 
resonant frequency and also its band-width. The greater the Q, the higher the peak 
response and the narrower the bandwidth. 

For a series RLC resonant circuit, Q=ω0L/R=1/ω0CR, where ω0 is the resonant 
angular frequency, ω0=1/(LC)1/2. The width of the resonant response curve between 
half-power point is Δω=ω0/Q. 
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Q Factor or Quality Factor 

The Q of a capacitor is important in tuned circuits because they are more damped and 
have a broader tuning point as the Q goes down.
Q = XC/R where XC is the capacitive reactance where XC = 1/(C) and R represents the 
equivalent series resistance (ESR).
Q is proportional to the inverse of the amount of energy dissipated in the capacitor. 
Thus, ESR rating of a capacitor is inversely related to its quality.
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Dissipation Factor (DF)

In physics, the dissipation factor (DF) is a measure of loss-rate of power of a mechanical 
mode, such as an oscillation, in a dissipative system.
For example, electric power is lost in all dielectric materials, usually in the form of heat. 
DF is expressed as the ratio of the resistive power loss to the capacitive power, and is 
equal to the tangent of the loss angle. 
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where 
：loss angle (損失角)

tan ：dissipation factor (散逸因數) 
Q：quality factor (品質因數)
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Dissipation Factor (DF) and Q Factor

The inverse of Q is the dissipation factor (DF).

C
R

X
R

Q
DF

C /1
1



The higher the ESR the more losses in the capacitor and the more power we 
dissipate. If too much energy is dissipated in the capacitor, it heats up to the point 
that values change (causing drift in operation) or failure of the capacitor.
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Q-Factor and Frequency Response (Impedance)
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Dissipation Factor (DF) and Q Factor
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Parasitic Elements and Equivalent Circuit of an 
Inductor

RESR

C

L

R



|Z(j)|

Lω

LC
ω 1

0 

LCωRCωj
LωjRωjZ 21

)(





R = series resistance
C = parallel capacitance

Q Factor = 
ESRR
L

The Q-factor of a capacitor is XL/Rs

where XL=1/ωC and Rs is the equivalent serial resistance that represents 
the core and winding losses,  is the frequency of interest.
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3D Embedded High Q-Factor Inductor for Low Frequency Applications
R.F. Drayton & B. Ziaie, E. Davies-Venn, T. Pan, A. Baldi
Electrical & Computer Engineering, University of Minnesota
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Example: Q-Factor of an LCR Circuit
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A problem with this procedure is the 
complexity of the quadratic formula used to 
find the corner frequencies.

R-L-C network example:

Use quadratic formula to factor denominator. 
Corner frequencies are:
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Factoring the Denominator
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This complicated expression yields little insight into how the corner frequencies 1 and 
2 depend on R, L, and C.

When the corner frequencies are well separated in value, it can be shown that they are 
given by the much simpler (approximate) expressions

RC
ω

L
Rω 1      , 21 

1 is then independent of C, and 2 is independent of L. 

These simpler expressions can be derived via the Low-Q Approximation.
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Derivation of the Low-Q Approximation

Given
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Corner Frequency 2

Can be written in the form
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For Q < 0.3, the approximation F(Q) = 1 
is within 10% of the exact value.
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Corner Frequency 1

Can be written in the form
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For Q < 0.3, the approximation F(Q) = 1 
is within 10% of the exact value.
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The Low-Q Approximation
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R-L-C Example
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For the previous example:

Use of the low-Approximation leads to
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Thank you for your attention!


