太陽光變頻器技術發展現況

太陽光變頻器電路架構之發展

Development of PV Inverter Circuit Topologies

鄒應嶼 教授

交通大學 電力電子系統與晶片設計實驗室,新竹, 台灣

2005115

TR-PV02.PV Inverter】太陽光變頻器的電路架構之發展


Power Electronics Technology for Renewable Energy


摘   要

太陽光變頻器根據其應用方式可分為獨立型、併網型、與混型三種型式,其電源轉換器根據不同的應用需求發展出各種電路架構,在設計一個太陽光變頻器的過程當中,電路架構的選擇,扮演著關鍵的角色。本文將應用於太陽光變頻器的各種電路架構予以整理與介紹,並說明選擇太陽光變頻器電路架構的一些設計考量。


目 錄

  1. 簡介

  2. 系統架構

  3. 單相太陽光變頻器電路拓撲

  4. 三相太陽光變頻器電路拓撲

  5. 結語

  6. 參考文獻

1. 簡 介

太陽光模組(PV module)是由多個太陽能光電池(solar cells)相互串聯在經由組裝、焊接、封裝、表面環氧樹脂塗佈、框架所構成的模組,太陽光變頻器(Photovoltaic Inverter, 簡稱PV inverter)是將太陽光模組所產生的電力轉換為與市電相同電壓與頻率的電源轉換器,主要分為三種型式:

併網型太陽光變頻器直接將太陽能轉換的電能饋入公共電力網路,不需要體積龐大、價格高、不易維護的電池組,有如一個獨立的小型發電機,可構成分散式發電系統,藉由新型的『淨電錶』(net meter),用戶可以向電力公司領取發電費,形成住宅發電系統,這種新形態的電力產生方式,將引發新形態的 小型再生能源發電的商業競爭,間接促進低成本高效率發電技術的發展。

再生能源的住宅發電系統與小型發電中心可形成由用戶提供電能的分散式發電系統[17]-[18],不僅可以兼顧環保的方式提供電能,促進市場導向電力經濟的發展,也可提供更可靠的電力品質。未來這種採用再生能源的住宅發電系統將有如白色家電與資訊家電一樣的廣泛的進入現代化家庭,不但具有廣大的商業發展潛力,也才能確實的從環保基礎建立優質的生活與環境品質。

2. 系統架構

併網型太陽光發電系統根據太陽光模組(PV module)的組合方式,可分為如圖4所示三種主要方式,中央集中式 的直流鏈可提供高壓高流輸出,主要應用於大型(>5 kW)高功率三相併網發電系統;線型串聯式其直流鏈提供高壓低流輸出,主要應用於中型(2-3 kW)中功率單相三線式併網發電系統;單板模組式一塊太陽光模組配有一個專屬的PV inverter,輸出容量受限於由於單板太陽光模組的容量,一般介於75-200W,應用於小型單相併網發電系統,其優點是容易擴充。

併網型太陽光發電系統的架構主要決定於效率與成本因素,系統架構選擇的考量可參考圖5。大型的太陽光發電系統為了提高整體效率,通常採用高壓高流三相的單級式轉換架構,因此其太陽光模組的排列方式必須產生一個高壓高流的直流輸出,反之,小型太陽光發電系統由於太陽光模組低電壓的限制,單板太陽光模組的開路電壓約介於17-22VDC,因此需要以兩級方式,先經由DC-DC升壓器將低壓直流予以升壓,再經由DC-AC變流器,將直流轉換為交流輸出。

目前較常使用的單板太陽光模組其開路電壓約介於17-22 VDC,額定輸出功率約為75-100W,設計時主要根據太陽光發電系統裝置的容量與輸出電壓準位決定太陽光模組的組合方式,其系統架構的考量可參考圖6。

    假設單板太陽光模組的最大輸出功率為PMP、最大功率轉換電壓為VMP、最大功率轉換電流為IMP,則N x PMP即為裝置容量,為了平均以及最佳化每塊太陽光模組的輸出功率,其排列方式會採用相同型號的太陽光模組,採取N=M x L的矩陣組合方式,M x VMP即為太陽光陣列(PV array)的額定輸出電壓,L x IMP即為太陽光陣列的額定輸出電壓流。由於N, L, M均是整數,同時為了降低接線損失,會採取緊密的配置結構以降低配線長度,因此僅能產生少數幾種組合,在低功率系統會造成相當大的電壓變化,為了克服此一問題,在中低功率的併網型太陽光發電系統,其變頻器通常採用兩級式電路架構

(a) 中央集中式 (b) 線型串聯式 (c) 單板模組式

4. 太陽光發電系統的系統架構示意圖 

5. 併網型太陽光發電系統的系統架構選擇的考量 

6. 太陽光電模組系統架構設計的考量

3. 單相太陽光變頻器電路拓撲

併網型太陽光變頻電路架構的分類

設計一個高效能的太陽光變頻器,電路拓撲的選擇,扮演著非常重要的角色,因為電路拓撲主要關係著效率與成本,同時也可能涉及 商品化的專利導致商業訴訟。

太陽光變頻器的電路架構基本上是一個採用輸出電流控制的直流轉換成交流的變流器(inverter),圖7是併網型太陽光變頻電路架構的分類,根據輸出的電源型式可分為單相與三相,若根據輸出電流的波形,則可分為方波式、弦波、以及堆疊近似弦波等;根據轉換級數,可分為單級式與雙級式;根據轉換電壓階數,可分為二階式、三階式與多階式;根據開關切換的方式,則可分為硬切(hard switching)與柔切(soft switching)等型式[D1]-[D12]。早期的(1985-1995)太陽光變頻器多採用雙級式架構,近年來(1996-2004)新型的太陽光變頻器多採用單雙級式架構再配合柔切電路以提高系統的效率。

7. 併網型太陽光變頻電路架構的分類

圖8為變壓器隔離型太陽光變頻器,可藉由變壓器調整電壓轉換範圍,因此可適用於寬廣的太陽光模組輸出電壓範圍,圖8(a)為低頻隔離型,優點是可採用低開關頻率、效率高,缺點是低頻輸出變壓器體積較大,輸出功率受限於輸出變壓器。圖8(b)為高頻隔離型,優點是體積較小,輸出級為電流饋入變流器,採用市電開關頻率界已降低損失,輸出功率因數大約0.9。

8.  變壓器隔離型太陽光變頻器
(a) Transformerless two-stage PV inverter
(b) Transformerless single-stage PV inverter

(c) Transformerless single-stage PV inverter with bi-directional switches 

圖9. 無變壓器非隔離併網型太陽光變頻器的電路架構

為了消除低頻變壓器的缺點,近年來併網型太陽光變頻器朝向無變壓器的非隔離型電路架構發展,圖9為無變壓器非隔離型太陽光變頻器。圖9(a)為兩級式非隔離型架構,前級為升壓型直流-直流轉換器,後級是一個全橋式DC-AC轉換器,直流鏈電壓約為輸出電壓RMS值的兩倍。圖9(b)為單級式非隔離型架構,其輸入電壓即為PV array的輸出電壓,因此太陽光模組必須串連產生足夠的直流鏈電壓,由於僅有單級轉換,因此可以得到較高的轉換效率。圖9(c)的輸出級包含了兩個反向的開關,其作用在於提供一個零電壓輸出(電流回流)的機制,用以降低輸出電流漣波,因此可以較低的主開關頻率達到輸出電流低總諧波失真的要求。

圖10無變壓器多階脈寬調變併網型太陽光變頻器的電

11全橋式零電流開關脈寬調變併網型太陽光變頻器的電路架構路架構

12多線雙級式併網型太陽光變頻器

圖11所示為單級半橋三階式併網型太陽光變頻器,其優點是可以耐經由多級串聯的功率晶體提高耐壓,同時因為可以產生多層階的脈寬調變電壓,因此也可以較低的開關頻率,得到相同品質的輸出波形,但是脈寬調變控制的策略較為複雜,可採用FPGA方式實現

13. 單級半橋三階式併網型太陽光變頻器

圖14是單相三線式併網型太陽光變頻器,此種單級式架構可藉由六個開關提供兩組單相輸出,適用於一般住宅的單相三線式供電系統。圖15是三相三線式併網型太陽光變頻器,適用於5 kW以上的併網型太陽光發電系統。

14. 單相三線式併網型太陽光變頻器

4. 三相太陽光變頻器電路拓撲

15. 三相三線式併網型太陽光變頻器

為了發展應用於太陽能發電廠2.3 - 6.9 kV高壓系統的併網型變頻器,可採用較低耐壓的功率晶體予以串聯以提高其耐壓,因此發展出多階層變流器。目前多階層變流器(multilevel inverter)有三種主要的電路架構:二極體箝位型、電容箝位型、獨立直流電源串接型,各有其適合應用的場合,控制上由於多個開關之間必須做到良好的同步與平衡控制, 是實用化實現技術發展上的一大挑戰,目前仍是學術界重要的研究議題。

5. 結 語

光伏變頻器是太陽能發電系統的整合關鍵,其電路架構的選用會影響光伏變頻器系統的效率、應用的靈活性、控制的方法、以及整體的成本,關於光伏變頻器的選擇與發展趨勢綜合如下:


REFERENCES

     A. System Architecture of PV Inverters

  1. Ying-Yu Tzou, A survey of PV inverter circuit topologies, DigitalPowerLab Technical Report, 2004. 

  2. Kuo-Lung Chai, Yue-Chun Lin, Jing-Fong Hsu, and Ying-Yu Tzou, "Review of PV inverter technologies for practical implementation," ISES Solar World Congress, Orlando, FL, USA., 2005.

  3. W. M. Rohoumaa, I. M. Molokhiab and A. H. Esurib, "Comparative study of different PV modules configuration reliability," The Ninth Arab International Conference on Solar Energy (AICSE-9), Kingdom of Bahrain, 1 May 2007.

  4. Kuang-Yao Cheng and Ying-Yu Tzou. "Analysis and comparison of single-phase grid-connected PV inverter topologies," Power Electronics and Motion Control Lab. Department of Electrical and Control Engineering, National Chiao Tung University, Taiwan, 14th International Photovoltaic Science and Engineering Conference, Chulalongkorn University, Bangkok, Thailand, January 26-30, 2004.

    B. Review Papers: Development of PV Inverter Topologies

  5. Dylan Dah-Chuan Lu, "Synthesis of Single Phase DC/AC Inverters," 2nd IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1922-1926, 2007.

  6. Quan Li, High Frequency Transformer Linked Converters for PV Applications, Ph.D. Thesis, Central Queensland University, Rockhampton, Australia, 30 June 2006.

  7. Kuo-Lung Chai and Ying-Yu Tzou, "Development of high-frequency transformer inverter power topologies for small-power grid-connected PV inverters," ISES Solar World Congress, Orlando, FL, USA., 2005. 

  8. S. B. Kjaer, J. K. Pedersen, F. Blaabjerg, "A review of single-phase grid-connected inverters for photovoltaic modules", IEEE Transactions on Industry Applications, vol. 41, no 5, pp. 1292-1306, Sept./Oct. 2005.【推薦閱讀】

  9. Jong Pil Lee, Byung Duk Min, Tae Jin Kim, Dong Wook Yoo, and Byung Kuk Lee, "A novel topology for photovoltaic series connected DC/DC converter with high efficiency under wide load range," IEEE PESC Conf. Rec., 2007.

  10. Roberto Gonzalez, Jesus Lopez, Pablo Sanchis, Eugenio Gubia, Alfredo Ursua, and Luis Marroyo, "High-efficiency transformerless single-phase photovoltaic inverter," EPE Power Electronics and Motion Control Conference (EPE-PEMC), pp. 1895-1900, Aug. 2006.

  11. Yaosuo Xue, Liuchen Chang, and Pinggang Song, "Recent developments in topologies of single-phase buck-boost inverters for small distributed power generators: an overview," IEEE The 4th International Power Electronics and Motion Control Conference (IPEMC), pp. 1118-1123, 2004.

  12. Yaosuo Xue, Liuchen Chang, Sren Baekhj Kjaer, J. Bordonau, and T. Shimizu, "Topologies of single-phase inverters for small distributed power generators: an overview," IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1305-1314, Sept. 2004.【推薦閱讀】

  13. F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1184–1194, Sep. 2004.

  14. M. Meinhardt and G. Cramer, "Past, present and future of grid connected photovoltaic- and hybrid-power-systems," Proc. IEEE-PES Summer Meeting, vol. 2, pp. 1283–1288, 2000.

  15. J. M. A. Myrzik and M. Calais, "String and module integrated inverters for single-phase grid connected photovoltaic systems—A review,: Proc. IEEE Bologna PowerTech Conf., vol. 2, pp. 430–437, 2003.

  16. S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, "Power inverter topologies for photovoltaic modules—A review," in Conf. Rec. IEEE-IAS Annu. Meeting, vol. 2, 2002, pp. 782–788.

  17. M. Calais, J. Myrzik, T. Spooner, and V. G. Agelidis, "Inverters for single-phase grid connected photovoltaic systems—An overview," IEEE PESC Conf. Rec., vol. 2, pp. 1995–2000, 2002.

  18. H. Haeberlin, "Evolution of inverters for grid connected PV-systems from 1989 to 2000," Proc. 17th Eur. Photovoltaic Solar Energy Conf., Munich, Germany, Oct. 22–26, 2001, pp. 426–430.

  19. B. Lindgren, "Topology for decentralised solar energy inverters with a low voltage ac-bus," Proc. EPE, 1999.

  20. Y. Nishida, S. Nakamura, N. Aikawa, S. Sumiyoshi, H. Yamashita, H. Omori, "A novel type of utility-interactive inverter for photovoltaic system,"  IEEE Power Electronics and Motion Control Conference (IPEMC), 2004.

  21. J. M. A. Myrzik, M. Calais, "String and module integrated inverters for single-phase grid connected photovoltaic systems - A review" Bologna PowerTech Conference. 2003 IEEE.

  22. H. Haeberlin, "Evolution of inverters for grid connected PV systems from 1989 to 2000", Proc. of 17th European Photovoltaic Solar Energy Conference, 2001.【推薦閱讀】 

  23. R. S. Lai, K.D. Ngo, "A PWM method for reduction of switching loss in a full bridge inverter," IEEE Trans. on Power Electronics, vol. 10. no. 3 May 1995.  

    C. Single-Phase PV Inverter Topologies

  24. T. Shimizu, K. Wada, and Nakamura, "Flyback-Type Single-Phase Utility Interactive Inverter With Power Pulsation Decoupling on the DC Input for an AC Photovoltaic Module System," IEEE Trans. on Power Electronics, vol. 21, no. 5, pp. 1264-1272, Sept. 2006.

  25. G. R. Walker and P. C. Sernia, "Cascaded DC-DC converter connection of photovoltaic modules," IEEE Trans. on Power Electronics, vol. 19, no. 4, pp. 1130-1139, July 2004. 

  26. T. Shimizu, O. Hashimoto, and G. Kimura, "A novel high-performance utility-interactive photovoltaic inverter system," IEEE Trans. on Power Electronics, vol. 18, no. 2, pp. 704-711, March 2003.

  27. S. B. Kaer and F. Blaabjerg, "A novel single-stage inverter for the ac-module with reduced low-frequency ripple penetration," Proc. 10th EPE European Conf. Power Electronics and Applications, Toulouse, France, Sept. 2–4, 2003.

  28. M. Nagao and K. Harada, "Power flow of photovoltaic system using buck-boost PWM power inverter," IEEE PEDS Conf. Rec., Singapore, pp. 144-149, May 26-29, 1997.

  29. S. B. Kjaer and F. Blaabjerg, "Design optimization of a single phase inverter for photovoltaic applications," IEEE PESC Conf. Rec., pp. 1183–1190, Acapulco, Mexico, June 15–19, 2003.

  30. A. Beristain, J. Bordonau, A. Gilabert, and G. Velasco, "Synthesis and modulation of a single phase dc/ac converter with high frequency isolation in photovoltaic energy applications,” IEEE PESC Conf. Rec., pp. 1191–1196, Acapulco, Mexico, June 15–19, 2003.

  31. R. Bonn, "Developing of "next generation" PV inverter," IEEE 29th Photovoltaic Specialists Conference Record, pp. 1352-1355, 19-24 May 2002.

  32. M. Calais, J. Myrzik, T. Spooner, and V. G. Agelidis, "Inverters for single-phase grid connected photovoltaic systems-an overview," IEEE PESC Conf. Rec., vol. 4, pp. 1995-2000, 2002.

  33. P. Wolfs and Quan Li, "An analysis of a resonant half bridge dual converter operating in continuous and discontinuous modes," IEEE PESC Conf. Rec., pp. 1313-1318, 2002.

  34. Hang-Seok Choi, Y. J. Cho, J. D. Kim and B. H. Cho, "Grid-connected photovoltaic inverter with zero-current-switching," Department of Electrical Engineering, Seoul National University, Seoul, Korea, ICPE 2001.

  35. K. Matsui, et. al., "Utility-interactive photovoltaic power conditioning system with forward converter for domestic applications," IEE Proc. Elect. Power Appl., vol. 147, no.3, pp 199-205, May 2000.

  36. Quan Li, Peter Wolfs, and Steven Senini, "The application of the half bridge dual converter to photovoltaic applications," International Journal of Renewable Energy Engineering, vol. 3, no. 3, pp. 367-372, 2001.

  37. T. J. Liang, Y. C. Kou, and J. R. Chen, "Single-stage photovoltaic energy conversion system," IEE Proceedings on Electrical Power Application, vol. 148, no. 4, pp. 339-344, July 2001.

  38. Xantrex-Trace: A review of inverter designs and topologies, 2000.

  39. Bjorn Lindgren, Topology for decentralized solar energy inverters with a low voltage AC-bus, Proc. of the 8th European Conf. on Power Electronics and Applications, Lausanne 1999. 

  40. H. Hinz and P. Mutschler, "Voltage source inverters for grid connected photovoltaic systems," IEEE Photovoltaic Specialists Conference, 1998. 

    D. AC PV Module

  41. Quan Li and Peter Wolfs, "A current fed two-inductor boost converter with an integrated magnetic structure and passive lossless snubbers for photovoltaic module integrated converter applications," IEEE Trans. on Power Electronics, vol. 22, no. 1, pp. 309-321, Jan. 2007. 【推薦論文】

  42. NKF Electronics. AC Module Inverters, Std. OK4E-100, OK4U-100, OK4J-100, 2-6 [Online]. Available: http://www.solarcentury.com/uploaddocs/ok4e100.pdf

  43. F. Liccardo, P. Marino, G. Torre, and M. Triggianese, "Interleaved dc-dc converters for photovoltaic modules," International Conference on Clean Electrical Power (ICCEP), pp. 201-207, 2007.

  44. B. M. T. Ho, S. H. Chung, and S.Y.R. Hui, "An integrated inverter with maximum power tracking for grid-connected PV systems," IEEE APEC Conf. Rec., pp. 1559-1565, 2004.

  45. E. Achille, T. Martire, C. Glaize, and C. Joubert, "Optimized DC-AC boost converters for modular photovoltaic grid-connected generators," IEEE ISIE Conf. Rec., pp. 1005–1010, 2004. 

  46. N. P. Papanikolaou, E. C. Tatakis, A. Critsis, and D. Klimis, "Simplified high frequency converter in decentralized grid-connected PV systems: a novel low-cost solution," Proc. EPE Conf. Rec., 2003.

  47. T. Shimizu, K. Wada, and N. Nakamura, "A flyback-type single phase utility interactive inverter with low-frequency ripple current reduction on the dc input for an ac photovoltaic module system," IEEE PESC Conf. Rec., pp. 1483–1488, Cairns, Australia, June 23–27, 2002.

  48. M. Nagao and K. Harada, "Power flow of photovoltaic system using buck-boost PWM power inverter," IEEE PEDS Conf. Rec. vol. 1, pp. 144–149, 1997.

  49. S. Mekhilef, N. A. Rahim, and A. M. Omar, "A new solar energy conversion scheme implemented using grid-tied single phase inverter," Proc. IEEE TENCON Conf. Rec., vol. 3, pp. 524–527, 2000.

  50. D. C. Martins and R. Demonti, "Grid connected PV system using two energy processing stages," 29th IEEE Photovoltaic Specialists Conf. Conf. Rec., pp. 1649–1652, 2002.

  51. D. C. Martins and R. Demonti, "Photovoltaic energy processing for utility connected system," IEEE IECON Conf. Rec., vol. 2, pp. 1292–1296, 2001.  

  52. M. Meinhardt, T. O’Donnell, H. Schneider, J. Flannery, C. O. Mathuna, P. Zacharias, and T. Krieger, "Miniaturised ‘low profile’ module integrated converter for photovoltaic applications with integrated magnetic components," IEEE APEC Conf. Rec., pp. 305–311, vol. 1, 1999.

  53. H. Oldenkamp and I. J. de Jong, "AC modules: past, present and future," Proc. Workshop Installing the Solar Solution, Hatfield, U.K., 1998.

  54. Soladin 120: Mastervolt, Oct. 2001. [Online]. Available: www.mastervolt.com/sunmaster

  55. A. Lohner, T. Meyer, and A. Nagel, "A new panel-integratable inverter concept for grid-connected photovoltaic systems,"  IEEE ISIE Conf. Rec., vol. 2, pp. 827–831, 1996.

  56. G. Keller, T. Krieger, M. Viotto, and U. Krengel, "Module orientated photovoltaic inverters-a comparison of different circuits," IEEE First World Conference on Photovoltaic Energy Conversion and IEEE Photovoltaic Specialists Conference, pp. 929 -932, 1994. 

    E. Multi-String Converter for PV Inverter

  57. M. Meinhardt and G. Cramer, "Multi-string-converter: The next step in evolution of string-converter technology," Proc. 9th Eur. Power Electronics and Applications Conf., 2001.

    F. Multi-Level PV Inverter Topologies

  58. Sanmin Wei, Bin Wu, Fahai Li, and Xudong Sun, "Control method for cascaded H-bridge multilevel inverter with faulty power cells," IEEE APEC Conf. Rec., pp. 261-267, Feb. 2003.

  59. J. Rodriguez, Jih-Sheng Lai, and Fang Zheng Peng, "Multilevel inverters: a survey of topologies, controls, and applications," IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724-738, Aug. 2002. 

  60. L. M. Tolbert and F. Z. Peng, "Multilevel converters as a utility interface for renewable energy systems," IEEE Power Engineering Society Summer Meeting, pp. 1271-1274, July 2000.

  61. Y.-S. Lai and F.-S. Shyu, "Topology for hybrid multilevel inverter," IEE Proceedings - Electric Power Applications, vol. 149, no. 6, pp. 449 - 458, Nov. 2002. 

  62. Bor-Ren Lin, Yuan-Po Chien, and Hsin-Hung Lu, "Multilevel inverter with series connection of H-bridge cells," IEEE PEDS Conf. Rec., pp. 859-864, 1999.

  63. M. Calais and V. G. Agelidis, "Multilevel converters for single-phase grid connected photovoltaic systems—an overview,"  IEEE ISIE Conf. Rec., vol. 1, pp. 224–229, 1998.

  64. P. W. Hammond, "A new approach to enhance power quality for medium voltage AC drives," IEEE Trans Ind.  Appl., vo. 33, no. 1, pp. 202-208. Jan.-Feb.1997. 

  65. F. Z. Peng, J. W. McKeever, and D. J. Adams, "Cascade multilevel inverters for utility applications," IEEE IECON Conf. Rec., pp. 437-442, Nov. 1997. 

  66. F. Z. Peng, J. W. McKeever, and D. J. Adams, "A power line conditioner using cascade multilevel inverters for distribution systems," IEEE IAS Annual Meeting, pp. 1316 - 1321, 1997.

  67. F. Tourkhani, P. Viarouge, and T. A. Meynard, "Optimal design and experimental results of a multilevel inverter for an UPS application," International Conference on Power Electronics and Drive Systems, pp. 340-343, 1997. 

  68. J. S. Lai and F. Z. Peng, "Multilevel converters - A new breed of power converters," IEEE Trans Ind.  Appl., vol. 32, pp. 509-517, 1996.

  69. S. Saha and V. P. Sundarsingh, "Novel grid-connected photovoltaic inverter," Proc. Inst. Elect. Eng., vol. 143, pp. 219–224, Mar. 1996.

  70. M. Carpita and S. Teconi, "A novel multilevel structure for voltage source inverter," Proc. EPE, pp. 90-94, 1991.   



  71. G. Three-Phase PV Inverter Topologies
  72. Raymond M. Hudson, etc., Design considerations for 3-phase PV inverters, Xantrex-Trace, 2002.

    H. Distributed Power Inverter Topologies

  73. Johan H.R. Enslin, Interconnection of distributed power inverters with the distribution network, IEEE Power Electronics Society News Letter, Fourth Quarter 2003.


台灣•新竹•交通大學•電力電子 系統與晶片設計實驗室
Copyright © 1987-2004 by 808-PowerLab, NCTU, TAIWAN

台灣新竹•交通大學•電力電子實驗室•網路資訊

TR-PV02.PV Inverter】太陽光變頻器的電路架構之發展 

修改記錄:本文首版撰寫於2005/01/15

修改記錄:針對參考文獻進行分類補充2007/10/15