專題研究


正弦波交流電源轉換器

Sine Wave Inverter

2001年7月1日

鍾偉煌、蔡建峰、鄒應嶼


交通大學 電機與控制工程系

前  言

      正弦變頻器是一個將直流電源轉換為交流電源的電源轉換器,輸入可以是一般的鉛酸電池、燃料電池、或是太陽能電光電模組,輸出是與市電相當的交流電源。近年來,一方面由於民眾日漸注重休閒生活,以汽車電源為電能來源的正弦變頻器,可提供戶外活動的交流電源,另一方面由於新能源開發已日益受到重視,先進國家均鼓勵民眾裝設太陽能發電系統,以太陽光為為電能來源的正弦變頻器,一方面可提供家用電源,另一方面也可作為交流發電機,將產生的電力饋入電網,形成小規模的住宅發電系統。由於這些因素,正弦變頻器的需求市場正逐漸形成,可望繼UPS之後,成為一個規格化的電力電子產品。有鑑於正弦變頻器的快速發展,本文說明正弦變頻器的定義與應用、規格、市場發展現況、以及技術發展趨勢。 

簡  介

       變流器(inverter)的功能是將直流電源轉換為交流電源,因此任何直流-交流電源轉換器均可稱之為變流器。應用於馬達驅動的inverter,一般稱之為變頻器,其主要功能是提供一個可調整輸出電壓與頻率的三相電源,藉以達到交流馬達(主要是感應馬達)調速控制的目的。應用於電源系統的inverter,一般稱之為變頻器、變流器、或逆變器。本文所探討的變流器主要是指應用於電源系統的inverter,以下均稱之為變頻器。

正弦變頻器的定義

       變頻器根據其輸出的相數(no. of phases),可分為單相變頻器與三相變頻器。單相變頻器一般應用於輸出功率低於5kW的電力系統,三相變頻器則應用於輸出功率較大的電力系統。變頻器的主要目的是提供一個固定電壓、固定頻率的低諧波失真交流電源。

       根據變頻器輸出電壓的波形,可分為:方波型(square)、近似正弦型(modified sine)、與純正弦型(true sine),其輸出波形如下圖所示。方波型變頻器電源諧波干擾嚴重,已被淘汰,一般市售的變頻器以近似正弦型與純正弦型為主,低功率小型的變頻器多以近似正弦型為主,但是由於電力電子轉換與控制技術的進步,近似正弦型變頻器已逐漸為純正弦型變頻器所取代

正弦變頻器的應用

  休旅車交流電源供應器 (Automotive / RV )
  遊艇交流電源供應器 
  備用交流電源供應器 (Emergency Backup Power )
 
光伏變頻器發電系統 (Solar Power Systems)
  保全系統 (Security Systems )
  Marine and other rugged environments (Digital Electronics Displays)
  Mobile Offices (TV and Radio Vans) 
  Electric Utilities and Substations
 
Base Station Power (Radio & Telecommunications)
 
OEM Applications
 
Base Station Power (Radio & Telecommunications)
 
Appliances and Home Electronics 
 
Musical Recording Equipment
 
Computers, Laser Printers, Monitors, Fax Machines, Graphics Workstations
 
Building Site Tools

正弦變頻器的設計挑戰

  低價格的市場壓力 (價格應低於0.5US$/W)
  輸出電壓的總諧波失真(THD)應低於3%
  效率應高於94%

正弦變頻器技術的發展現況

       若此交流電源等效於市電,。,。 日常生活中許多的電子資訊與家電產品都需要一個電源轉換器(adapter),其功能是將一般的交流電源(110/220V, 50/60Hz)轉換為低電壓的直流電源,如12V, 5V, 3.3V等等,由與此類需求急速增加,adapter也成為一個重要的電子資訊設備附屬產品,具有龐大的市場發展潛力。 

 

正弦變頻器的規格

       正弦變頻器的主要規格說明如下:(Xantrex: PROsine 1000 true sine wave power inverter)

  Output Power Continuous: 1000 watts (額定輸出功率)
  Output Power Surge: 1500 watts for 5 seconds 
(瞬間容許最大輸出功率,必須指定時間)
  Peak Output Current: 25A 
(峰值輸出電流)
  AC output Power: 110V 
  Regulation: +/- 10% 
  Output Wave Form: Modified Sine Wave 

 

Example of Sine Wave Inverters

100 Watt Isolated Inverter

Vidcam: 100 Watt 12V-230VAC Isolated Inverter

Vidcam: 1500 Watt 12V- 230VAC Isolated Inverter

 

TOPS-MATE: G-12-150S 150W sine wave inverter

Exeltech XP600 12-volt 600 watt sine wave inverter 

 

WinSun: 12V 600W Sine Wave Inverter

C&C Power: 12V 600W Sine Wave Inverter

 300 Watt Inverter with True Sine Wave Output

Xantrex: PROsine 1000 sine wave power inverter

g-12-150s.jpg (11710 bytes)

 g-12-300sr.jpg (9853 bytes)

TOPS-MATE: G-12-150S 150W sine wave inverter

TOPS-MATE: G-12-300S 300W sine wave inverter

General Features of Sine Wave Inverters

Features
  Output Power Continuous: 1000 watts 
 
Output Power Surge: 2000 watts 
 
AC output Power: 110V 
 
Regulation: +/- 10% 
 
Output Wave Form: Modified Sine Wave 
 
DC Input Voltage: 12-15 volts 
 
Low Battery alarm: at 10.5V +/- 0.5V 
 
Low Battery Shut Down: at DC 10V +/- 0.5V 
 
Frequency +/- 1%: 60 Hz 
 
Efficiency: 85% at full load/ 90% at 1/3 load 
 
No load Current Draw: < 1.35A 
 
Over Temperature Protection: At 55 deg C +/- 5 deg C 
 
Cooling Fan: Yes 
 
Overload Protection: Yes 
 
Input Short Circuit Protection: Yes 
 
Dimensions (L x W x H): 393 x 242 x 80mm 
 
Net Weight: 3.15 KGs 

TYPICAL SPECIFICATIONS OF SINE WAVE INVERTERS

OUTPUT SPECIFICATION

Line regulation
<0.5%
Total regulation (including voltage drop in cable)
<5%
Startup time
3S maximum
Overshoot/Undershoot
At turn on
<5%
Transient response
50% to 100%
load step
5% max dex
2ms recovery
Over/voltage protection
inherent
Peak output power limit
150W max
Short circuit protection
Continuous with auto-restart
INPUT SPECIFICATION
Input voltage range
90 to 264 VAC
Input frequency range
47Hz to 63Hz
Inrush current
130A
Input harmonic current
Comply with IEC 1000-3-2
Safety ground
110 VAC,60Hz
0.2mA
Leakage current
230 VAC,50Hz
0.4mA
EMC SPECIFICATIONS
EMI/RFI
EN55022
CLASS B
FCC PART 15
CLASS B
ESD
IEC801-2
Level 3
EFT/Burst
IEC801-4
Level 3
Line transient
IEC801-5
Level 3
GENERAL SPECIFICATIONS
Hold-up time
110VAC/230VAC
6mS
Efficiency
90% typical at 230 VAC
Isolation voltage
Input/output 3000 VAC
Switching frequency
Fixed
Approvals and Safety standards
EN60950, VDE0805, CE, CSA C22.2
No.950,IEC 950,UL 1950
Case Material
General Electric Lexan, Black
Flammability rated
UL 94V-0
Weight
900g
MTBF
MIL-HDBK-217F
150,000Hrs
ENVIRONMENTAL SPECIFICATIONS
Thermal performance
Operating full Load, no derating
Non-operating
0℃to+40℃
-40℃to +85℃
Relative humidity
Non-condensing
5% to 95% RH
Altitude
Operating
Non-operating
10,000 feet max
30,000 feet max
Vibration 5Hz to 500Hz
Three orthogonal axes random vibration,
10 minutes test for each axis
2.4G rms

正弦變頻器的市場發展現況

     

Topologies of PWM Inverters

 
Basic topologies of inverters.

 

Control Architecture

Control architecture of the DSP-based sine wave inverter.

 

Control Schemes

Digital control scheme for the PWM inverter for sinusoidal output.

 

 

 

Development of a DSP-based Space Vector Modulated Sine Wave Inverter

H Dehbonei, Prof. C V Nayar, Dr L Borle, and M Abshar, Magellan Energy Pty Ltd.

Abstract

       The project involves the development of advanced power electronics equipment     required in energy systems that produce or store electric energy in DC form and transfer that energy to or from an AC power system. Typical energy systems include solar photovoltaic, wind turbines, batteries, and fuel cells. An inverter converts direct current (DC) into alternating current (AC) by electronic means and makes renewable resources and energy storage systems utility interactive. Inverters are basic components on most small and large energy systems that convert low-voltage DC power generated from a renewable energy source into higher-voltage AC power required for many residential, commercial, and industrial applications.

       A new grid interactive inverter technology based on the use of state-of-the-art Texas Instruments Digital Signal Processing (DSP) controller and proprietary software is being developed jointly between Magellan Power Converters and the Centre for Renewable Energy Systems Technology Australia (CRESTA). The advantages expected from a DSP-based control algorithm include increased reliability, fast response resulting in high performance, low cost of implementation, and flexibility of control. In addition, the proposed control will be capable of maintaining constant regulated AC voltages at consumer end regardless of variation in the grid voltage, without any additional costs or components. The system can also function as an Uninterruptible Power Supply (UPS) System with part of the energy coming from renewable energy sources. The proposed system can also find applications as a renewable energy/Diesel hybrid power system for remote areas in Australia and in developing countries not connected to the utility grid. This project is funded through Western Australian Innovation Support Scheme.

REFERENCES

DSP Control of Sine Wave Inverters

  1. N. Kularatna and K.D.D.P. Silva, "New approach to Sine Wave Inverters for UPS and emergency power supplies using low cost MOS Gate Drivers," Proceedings of Power Systems World98 Conference, USA, (PCIM98) pp. 332-341.
  2. Nihal Kularatna and D.I.M. de Silva, "DSP Based Sine Wave Inverters For UPS & Emergency Power Supplies with MOS Gate Drivers," Proceedings of Power Systems World99 Conference (PCIM99), Chicago, USA, pp. 296-304.
  3. Nihal Kularatna, "Inverter Offers Design Flexibility"; EDN Magazine, USA, pp. 172-174, 5 June 2000.
  4. D.I.M. de Silva, Nihal Kularatna and L.N. Rathnayake, "DSP Algorithms for Low Component Count Inverters," Proceedings of Power Electronics & Motion Control, EPE-PEMC 2000; Kosice, Slovak Republic, pp. 3-70 to 3-74.
  5. Nihal Kularatna, D.I.M. de Silva and L.N. Rathnayake, "DSP Based Control Algorithms for Harmonic & RMS Output Control in Sinewave Inverters," Proceedings of Power Systems World 2000 Conference (PCIM2000); USA, pp. 416 to 423.
  6. Nihal Kularatna, D.I.M. de Silva and L.N. Rathnayake, "DSP Based System Produces Low Distortion Sinewaves for UPS Applications," Power Electronics System Journal (PCIM), USA, May, 2000, pp. 18-26.

Digital Contorl of PWM DC-AC Converters

  1. Tzann-Shin Lee, S. J. Chiang, and Jhy-Ming Chang, "H-infinity loop-shaping controller designs for the single-phase UPS inverters," IEEE Trans. on Power Electronics, vol. 16, no. 4, pp. 473-481, July, 2001.
  2. T. Yokoyama, Y. Kuwao, and T. Haneyoshi, "The characteristic of instantaneous value control with voltage variation compensation with various carries frequency for UPS application," IEEE IPEC Conf. Rec., pp. 982-987, 2000.
  3. Ying-Yu Tzou, Rong-Shyang Ou (歐榮祥), Shih-Liang Jung (榮世良), and Meng-Yueh Chang (張盟岳), "High-performance programmable ac power source with low harmonic distortion using DSP-based repetitive control technique," IEEE Trans. on Power Electronics, vol. 12, no. 4, pp. 715-725, July, 1997.
  4. Shih-Liang Jung (榮世良) and Ying-Yu Tzou, "Multiloop control of an 1-phase PWM inverter for ac power source," IEEE PESC Conf. Rec., pp. 706-712, June 22-26, 1997.
  5. Ying-Yu Tzou, "DSP-based fully digital control of a PWM dc-ac converter for ac voltage regulation," IEEE PESC Conf. Rec., pp. 138-144, June 1995.
  6. Y. Ito and S. Kawauchi, "Microprocessor-based robust digital control for UPS with three-phase PWM inverter," IEEE Trans. on Power Electron., pp. 196-204, vol. 10, no. 2, March 1995.
  7. Y. S. Sun, C. H. Kim, J. W. Lee, Y. H. Kim, and Y. S. Yoo, "Fully digitalized high frequency link DC/AC converter," IEEE INTELEC Conf. Rec., pp. 659-663, 1995.
  8. I. Kubo, Y. Ozawa, R. Nakatsuka, A. Shimizu, "A fully digital controlled UPS using IGBT's," IEEE IAS Annual Meeting Conf. Rec., pp. 1042-1046, 1991.
  9. H. I. Cha, S. S. Kim, M. G. Kang, and Y. H. Chung, "Real-time digital control of PWM inverter with PI compensator UPS," IEEE IAS Annual Meeting Conf. Rec., pp. 1124-1128, 1990.
  10. A. Kawamura and T. Yokoyama, "Comparison of five different approaches for real time digital feedback control of PWM inverters," IEEE PESC Conf. Rec., pp. 1005-1011, 1990.
  11. A. Kawamura and K. Ishihara, "Real time digital feedback control of three-phase PWM inverters with quick transient response," IEEE IAS Annual Meeting Conf. Rec., pp. 728-734, 1988.
  12. K. P. Gokhale, A. Kawamura, and R. G. Hoft, "Dead beat microprocessor control of PWM inverter for sinusoidal output waveform synthesis," IEEE PESC Conf. Rec., pp. 28-36, 1985.

 


交通大學電力電子與運動控制實驗室

TEL: 886-3-5731697

E-mail: pemclab808@gmail.com
Department of Electrical and Control Engineering
National Chiao Tung University
No. 1001, Ta-Hseuh Rd, Hsinchu, Taiwan 

 


Copyright © 2002 by PEMCLAB, NCTU, TAIWAN